SIAM REVIEW (© 2017 Society for Industrial and Applied Mathematics
Vol. 59, No. |, pp. 65-98

Julia: A Fresh Approach to
Numerical Computing*

Jeff Bezanson!
Alan Edelman?
Stefan Karpinski®
Viral B. Shahf

Abstract. Bridging cultures that have often been distant, Julia combines expertise from the diverse
fields of computer science and computational science to create a new approach to numerical
computing. Julia is designed to be easy and fast and questions notions generally held to
be “laws of nature” by practitioners of numerical computing:

1. High-level dynamic programs have to be slow.

2. One must prototype in one language and then rewrite in another language for speed
or deployment.

3. There are parts of a system appropriate for the programmer, and other parts that are
best left untouched as they have been built by the experts.

We introduce the Julia programming language and its design—a dance between special-
ization and abstraction. Specialization allows for custom treatment. Multiple dispatch,
a technique from computer science, picks the right algorithm for the right circumstance.
Abstraction, which is what good computation is really about, recognizes what remains the
same after differences are stripped away. Abstractions in mathematics are captured as
code through another technique from computer science, generic programming.

Julia shows that one can achieve machine performance without sacrificing human con-
venience.

Key words. Julia, numerical, scientific computing, parallel
AMS subject classifications. 68N15, 65Y05, 97P40

DOI. 10.1137/141000671

Contents
I Scientific Computing Languages: The Julia Innovation 66
1.1 Julia Architecture and Language Design Philosophy 67

*Received by the editors December 18, 2014; accepted for publication (in revised form) December
16, 2015; published electronically February 7, 2017.
http://www.siam.org/journals/sirev/59-1/100067.html
Funding: This work received financial support from the MIT Deshpande Center for Technological
Innovation, the Intel Science and Technology Center for Big Data, the DARPA XDATA program, the
Singapore MIT Alliance, an Amazon Web Services grant for JuliaBox, NSF awards CCF-0832997,
DMS-1016125, and DMS-1312831, VMware Research, a DOE grant with Dr. Andrew Gelman of
Columbia University for petascale hierarchical modeling, grants from Saudi Aramco thanks to Ali
Dogru and Shell Oil thanks to Alon Arad, and a Citibank grant for High Performance Banking Data
Analysis, Chris Mentzel, and the Gordon and Betty Moore Foundation.
tJulia Computing, Inc. (jeff@juliacomputing.com, viral@juliacomputing.com).
TCSAIL and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
02139 (edelman@math.mit.edu).
§New York University, New York, NY 10012, and Julia Computing, Inc. (stefan@juliacomputing.
com).

65

http://www.siam.org/journals/s
mailto:jeff@juliacomputing.com
mailto:viral@juliacomputing.com
mailto:edelman@math.mit.edu
mailto:stefan@juliacomputing.com
mailto:stefan@juliacomputing.com

66 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

2 A Taste of Julia 68
2.1 ABrief Tour 68
2.2 An Invaluable Tool for Numerical Integrity 72
2.3 The Julia Community 74

3 Writing Programs With and Without Types 74
3.1 The Balance between Human and the Computer 74
3.2 Julia’s Recognizable Types 74
3.3 User’'s Own Types Are First Class Too 75
3.4 Vectorization: Key Strengths and Serious Weaknesses 76
3.5 Type Inference Rescues “For Loops” and So Much More 78

4 Code Selection: Run the Right Code at the Right Time 78
4.1 Multiple Dispatch o 79
4.2 Code Selection from Bits to Matrices 81

4.2.1 Summing Numbers: Floats and Ints 81
4.2.2 Summing Matrices: Dense and Sparse 82
4.3 The Many Levels of Code Selection 83
4.4 Is “Code Selection” Traditional Object Oriented Programming? 85
4.5 Quantifying the Use of Multiple Dispatch 86
4.6 Case Study for Numerical Computing 87
4.6.1 Determinant: Simple Single Dispatch 88
4.6.2 A Symmetric Arrow Matrix Type. 89

5 Leveraging Design for High Performance Libraries 90
5.1 Integer Arithmetic 90
5.2 A Powerful Approach to Linear Algebra 91

5.2.1 Matrix Factorizations 91

5.2.2 User-Extensible Wrappers for BLAS and LAPACK 92

5.3 High Performance Polynomials and Special Functions with Macros . . 93
5.4 Easy and Flexible Parallelism 94
5.5 Performance Recap oL 96

6 Conclusion 97
References 97

I. Scientific Computing Languages: The Julia Innovation. The original nu-
merical computing language was Fortran, short for “Formula Translating System,”
released in 1957. Since those early days, scientists have dreamed of writing high-level,
generic formulas and having them translated automatically into low-level, efficient
code, tailored to the particular data types they need to apply the formulas to. For-
tran made historic strides toward the realization of this dream, and its dominance in
SO many areas is a testament to its success.

The landscape of computing has changed dramatically over the years. Modern
scientific computing environments such as Python [34], R [12], Mathematica [21],
Octave [25], MATLAB [22], and Scilab [10], to name a few, have grown in popularity
and fall under the general category known as dynamic languages or dynamically typed
languages. In these programming languages, programmers write simple, high-level
code without any mention of types like int, float, or double that pervade statically
typed languages such as C and Fortran.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 67

Many researchers today work in dynamic languages. Still, C and Fortran remain
the gold standard for performance for computationally intensive problems. As much
as the dynamic language programmer misses out on performance, though, the C and
Fortran programmer misses out on productivity. An unfortunate outcome is that
the most challenging areas of numerical computing have benefited the least from
the increased abstraction and productivity offered by higher-level languages. The
consequences have been more serious than many realize.

Julia’s innovation lies in its combination of productivity and performance. New
users want a quick explanation as to why Julia is fast and want to know whether
somehow the same “magic dust” could also be sprinkled on their favorite traditional
scientific computing language. Julia is fast because of careful language design and
the right combination of carefully chosen technologies that work very well with each
other. This article demonstrates some of these technologies using a number of exam-
ples. Celeste serves as an example for readers interested in a large-scale application
that leverages 8,192 cores on the Cori Supercomputer at Lawrence Berkeley National
Laboratory [28].

Users interact with Julia through a standard REPL (real-eval-print loop environ-
ment such as Python, R, or MATLAB), by collecting commands in a .jl file, or by
typing directly in a Jupyter (JUlia, PYThon, R) notebook [15, 30]. We invite the
reader to follow along at http://juliabox.com using Jupyter notebooks or by down-
loading Julia from http://julialang.org/downloads.

l.1. Julia Architecture and Language Design Philosophy. Many popular dy-
namic languages were not designed with the goal of high performance in mind. After
all, if you wanted really good performance you would use a static language, or so said
the popular wisdom. Only with the increasing need in the day-to-day life of scientific
programmers for simultaneous productivity and performance has the need for high
performance dynamic languages become pressing. Unfortunately, retrofitting an ex-
isting slow dynamic language for high performance is almost impossible, specifically
in numerical computing ecosystems. This is because numerical computing requires
performance-critical numerical libraries, which invariably depend on the details of the
internal implementation of the high-level language, thereby locking in those internal
implementation details. For example, you can run Python code much faster than the
standard CPython implementation using the PyPy just-in-time (JIT) compiler, but
PyPy is currently incompatible with NumPy and the rest of SciPy.

Another important point is that just because a program is available in C or
Fortran, it may not run efficiently from the high-level language.

The best path to a fast, high-level system for scientific and numerical computing is
to make the system fast enough that all of its libraries can be written in the high-level
language in the first place. The JuMP.jl [20] package for mathematical programming
and the Convex.jl [33] package for convex optimization are great examples of the
success of this approach—in each case the entire library is written in Julia and uses
many Julia language features described in this article.

The Two Language Problem. As long as the developers’ language is harder to
grasp than the users’ language, numerical computing will always be hindered. This
is an essential part of the design philosophy of Julia: all basic functionality must be
possible to implement in Julia—never force the programmer to resort to using C or
Fortran. Julia solves the two language problem. Basic functionality must be fast:
integer arithmetic, for loops, recursion, floating-point operations, calling C functions,
and manipulating C-like structs. While these features are not only important for

http://juliabox.com
http://julialang.org/downloads

68 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

numerical programs, without them you certainly cannot write fast numerical code.
“Vectorization languages” like Python+NumPy, R, and MATLARB hide their for loops
and integer operations, but they are still there, inside the C and Fortran, lurking
beneath the thin veneer. Julia removes this separation entirely, allowing the high-level
code to “just write a for loop” if that happens to be the best way to solve a problem.

We believe that the Julia programming language fulfills much of the Fortran
dream: automatic translation of formulas into efficient executable code. It allows
programmers to write clear, high-level, generic and abstract code that closely re-
sembles mathematical formulas, yet produces fast, low-level machine code that has
traditionally only been generated by static languages.

Julia’s ability to combine these levels of performance and productivity in a single
language stems from the choice of a number of features that work well with each other:

1. An expressive type system, allowing optional type annotations (section 3).
2. Multiple dispatch using these types to select implementations (section 4).
3. Metaprogramming for code generation (section 5.3).
4. A dataflow type inference algorithm allowing types of most expressions to be
inferred [2, 4].
Aggressive code specialization against run-time types [2, 4].
6. JIT compilation [2, 4] using the LLVM compiler framework [18], which is also
used by a number of other compilers such as Clang [6] and Apple’s Swift [32].
7. Julia’s carefully written libraries that leverage the language design, i.e., points
1 through 6 above (section 5).

Points 1, 2, and 3 above are features especially for the human user, and they are
the focus of this paper. For details about the features related to language implemen-
tation and internals such as those in points 4, 5, and 6, we direct the reader to our
earlier work [2, 4]. The feature in point 7 brings everything together to enable the
building of high performance computational libraries in Julia.

Although a sophisticated type system is made available to the programmer, it
remains unobtrusive in the sense that one is never required to specify types, and
neither are type annotations necessary for performance. Type information flows nat-
urally through the program due to dataflow type inference.

In what follows, we describe the benefits of Julia’s language design for numeri-
cal computing, allowing programmers to more readily express themselves while also
obtaining performance.

2. A Taste of Julia.
2.1. A Brief Tour.

ot

In[1]: A = rand(3,3) + eye(3) # Familiar Syntax
inv(A)
The result of the final expression is displayed in Out[1]

Out[1]: 3x3 Array{Float64,2}:
0.698106 -0.393074 -0.0480912
-0.223584 0.819635 -0.124946
-0.344861 0.134927 0.601952

The output from the Julia prompt says that A~! is a two-dimensional matrix of
size 3 x 3 and contains double precision floating-point numbers.

Indexing of arrays is performed with brackets with index origin 1. It is also pos-
sible to compute an entire array expression and then index into it, without assigning

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 69

the expression to a variable:

In[2]: x
y

Al1,2]
(A+2I) [3,3] # The [3,3] entry of A+2I

Out[2]: 2.601952

In Julia, T is a built-in representation of the identity matrix, without any explicit
forming of the identity matrix as is commonly done using commands such as “eye.”
(“eye,” a homonym of “I,” is used in such languages as MATLAB, Octave, Go’s matrix
library, Python’s NumPy, and Scilab.)

Julia has symmetric tridiagonal matrices as a special type. For example, we may
define Gil Strang’s favorite matrix (the second-order difference matrix; see Figure 1)
in a way that uses only O(n) memory.

Fig. | Gil Strang’s favorite matriz is strang(n) = SymTridiagonal(2*ones(n),-ones(n-1)). Julia
only stores the diagonal and off-diagonal. (Picture taken in Gil Strang’s classroom.)

In[3]: strang(n) = SymTridiagonal(2xones(n),-ones(n-1))

strang(7)
Out[3]: 7x7 SymTridiagonal{Float64}:
2.0 -1.0 0.0 0.0 0.0 0.0 0.0
-1.0 2.0 -1.0 0.0 0.0 0.0 0.0
0.0 -1.0 2.0 -1.0 0.0 0.0 0.0
0.0 0.0 -1.0 2.0 -1.0 0.0 0.0
0.0 0.0 0.0 -1.0 2.0 -1.0 0.0
0.0 0.0 0.0 0.0 -1.0 2.0 -1.0
0.0 0.0 0.0 0.0 0.0 -1.0 2.0

A commonly used notation to express the solution x to the equation Az = b is
A\b. If Julia knows that A is a tridiagonal matrix, it uses an efficient O(n) algorithm:

In[4]: strang(8)\ones(8)

70 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

Out [4]: 8-element Array{Float64,1}:
4.0
7.
9.
10.
10.

O O O O O O O

SN o

Note the Array{ElementType,dims} syntax. In the above example, the elements
are 64-bit floats or Float64’s. The 1 indicates it is a one-dimensional vector.

Consider the sorting of complex numbers. Sometimes it is handy to have a sort
that generalizes the real sort. This can all be done by sorting first by the real part,
and where there are ties, sort by the imaginary part. Other times it is handy to use
the polar representation, which sorts by radius then by angle. By default, complex
numbers are incomparable in Julia.

If a numerical computing language “hardwires” its sort to be one or the other,
it misses an opportunity. A sorting algorithm need not depend on the details of
what is being compared or how it is done so. One can abstract away these details,
thereby enabling the reuse of a sorting algorithm for many different situations. One
can specialize later. Thus, alphabetizing strings, sorting real numbers, and sorting
complex numbers in two or more ways can all be done using the same code.

In Julia, one can turn a complex number w into an ordered pair of real numbers (a
tuple of length 2) such as the Cartesian form (real(w),imag(w)) or the polar form
(abs(w) ,angle(w)). Tuples are then compared lexicographically. The sort command
takes an optional “less-than” operator, 1t, which is used to compare elements when
sorting.

In[5]: # Cartesian comparison sort of complex numbers
complex_comparel(w,z) = (real(w),imag(w)) < (real(z),imag(z))
sort([-2,2,-1,im,1], 1t = complex _comparel)

Out [5]: 5-element Array{Complex{Int64},1}:
-2+0im
-1+0im
O0+1im
1+0im
2+0im

In[6]: # Polar comparison sort of complex numbers
complex_compare2(w,z) = (abs(w),angle(w)) < (abs(z),angle(z))
sort([-2,2,-1,im,1], 1t = complex compare2)

Out[6]: 5-element Array{Complex{Int64},1}:
1+0im
0+1im
-1+0im
2+0im
-2+0im

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 71

To be sure, experienced computer scientists tend to suspect that there is nothing
new under the sun. The C function gsort() takes a compar function, so there is
nothing really new there. Python also has custom sorting with a key; MATLAB’s
sort is more basic. The real contribution of Julia, as will be fleshed out further in this
article, is that its design allows custom sorting to be high performance, flexible, and
comparable with implementations that are often written in C.

The next example that we have chosen for this introductory taste of Julia is a
quick plot of Brownian motion, in two ways. The first uses the Python Matplotlib
package for graphics, which is popular for users coming from Python or MATLAB.
The second uses Gadfly.jl, another very popular package for plotting. Gadfly was
built completely in Julia by Daniel Jones and was influenced by the much-admired
“Grammar of Graphics” (see [36] and [35]).! Many Julia users find Gadfly more
flexible and prefer its aesthetics. Julia plots can also be manipulated interactively
with sliders and buttons using its Interact.jl package.?2 The Interact.jl package web
page contains many examples of interactive visualizations.?

In[7]: Pkg.add("PyPlot") # Download the PyPlot package
using PyPlot # load the functionality into Julia

for i=1:5
y=cumsum (randn (500))
plot(y)

end

30

20+

10+

A y
i

—10F

—20

-30
0 100 200 300 400 500

1See tutorial at http://gadflyjl.org
2https://github.com/JuliaLang/Interact.jl
Shttps://github.com/JuliaLang/Interact.jl/issues/36

http://gadflyjl.org
https://github.com/JuliaLang/Interact.jl
https://github.com/JuliaLang/Interact.jl/issues/36

72 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

In[8]: Pkg.add("Gadfly") # Download the Gadfly package
using Gadfly # load the functionality into Julia

500

["First", "Second", "Third"]
[colorant"yellow",colorant"cyan",colorant"magenta"]
[layer(x=1:n, y=cumsum(randn(n)), Geom.line,

Theme (default_color=i)) for i in c]

T o B
]

labels=(Guide.xlabel("Time") ,Guide.ylabel("Value"),
Guide.title("Brownian Motion Trials"),

Guide.manual_color_key("Legend", 1, c))
Gadfly.plot(p...,labels...)

Brownian Motion Trials

20
O .
Trial

@)
3 20 M First
< Second
= B Third

-40

-60

0 100 200 300 400 500

Time

The ellipses on the last line of text above are known as a splat operator. The
elements of the vector p and the tuple labels are inserted individually as arguments
to the plot function.

2.2. An Invaluable Tool for Numerical Integrity. One popular feature of Julia
is that it gives the user the ability to “kick the tires” of a numerical computation. We
thank Velvel Kahan for the sage advice* concerning the importance of this feature.

The idea is simple: a good engineer tests his or her code for numerical stability. In
Julia this can be done by changing the IEEE rounding modes. There are five modes to
choose from, yet most engineers silently choose only the RoundNearest mode default
available in many numerical computing systems. If a difference is detected, one can
also run the computation in higher precision. Kahan [16] writes:

Can the effects of roundoff upon a floating-point computation be assessed
without submitting it to a mathematically rigorous and (if feasible at all)
time-consuming error-analysis? In general, No....

4Personal communication, January 2013, in the Kahan home, Berkeley, California.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 73

Though far from foolproof, rounding every inexact arithmetic operation
(but not constants) in the same direction for each of two or three directions
besides the default To Nearest is very likely to confirm accidentally exposed
hypersensitivity to roundoff. When feasible, this scheme offers the best
Benefit/Cost ratio.

As an example, we round a 15 x 15 Hilbert-like matrix and take the [1,1] entry
of the inverse computed in various roundoff modes. The radically different answers
dramatically indicate the numerical sensitivity to roundoff. We have even noticed
that slight changes to LAPACK lead to radically different answers. Most likely you
will see different numbers when you run this code due to its very high sensitivity to
roundoff errors.

In[9]: h@)=[1/(i+j+1) for i=1:n,j=1:n]

Out[9]: h (generic function with 1 method)

In[10]: H=h(15);
setrounding(Float64,RoundNearest) do
inv(H) [1,1]
end

Out [10] : 154410.55589294434

In[11]: setrounding(Float64,RoundUp) do
inv(H) [1,1]
end

Out[11]: -49499.606132507324

In[12]: setrounding(Float64,RoundDown) do
inv(H) [1,1]
end

Out[12]: -841819.4371948242
With 300 bits of precision, we obtain

In[13]: with bigfloat precision(300) do
inv(big(H)) [1,1]
end

Out[13]: -2.09397179250746270128280174214489516162708857703714959763232689047153
50765882491054998376252e+03
Note that this is the [1,1] entry of the inverse of the rounded Hilbert-like ma-
trix, not the inverse of the exact Hilbert-like matrix, whose entry would be exactly
1,387,200. Also, the Float64 results are sensitive to the BLAS [19] and LAPACK [1]

74 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

libraries, and may differ on different machines with different versions of Julia. For
extended precision, Julia uses the MPFR library [9].

2.3. The Julia Community. Julia has been under development since 2009, and a
public release was announced in February of 2012. It is an active open source project
with over 500 contributors and is available under the MIT License [23] for open source
software. Over 2 million unique visitors have visited the Julia website since then, and
Julia has now been adopted as a teaching tool in dozens of universities around the
world.? The community has contributed over 1200 Julia packages. While it was nur-
tured at the Massachusetts Institute of Technology, it is really the contributions from
experts around the world that make it a joy to use for numerical computing. It is
also recognized as a general purpose computing language, unlike traditional numerical
computing systems, allowing it to be used not only to prototype numerical algorithms,
but also to deploy those algorithms and even serve results to the rest of the world. A
great example of this is Shashi Gowda’s Escher.jl package,’ which makes it possible
for Julia programmers to build beautiful interactive websites in Julia and serve up the
results of a Julia computation from the web server, without any knowledge of HTML
or JavaScript. Another such example is “Sudoku-as-a-Service,”” by Iain Dunning,
where a Sudoku puzzle is solved using the optimization capabilities of the JuMP.jl Ju-
lia package [20] and made available as a web service. This is exactly why Julia is being
increasingly deployed in production environments in businesses, as is seen in various
talks at JuliaCon.? These use cases utilize Julia’s capabilities not only for mathemat-
ical computation, but for building web APIs, database access, and much more.

3. Writing Programs With and Without Types.

3.1. The Balance between Human and the Computer. Graydon Hoare, author
of the Rust programming language [29], defined programming languages succinctly in
an essay on Interactive Scientific Computing [11]:

Programming languages are mediating devices, interfaces that try to strike
a balance between human needs and computer needs. Implicit in that is
the assumption that human and computer needs are equally important, or
need mediating.

A program consists of data and operations on data. Data is not just the input file,
but everything that is held—an array, a list, a graph, a constant—during the life of the
program. The more the computer knows about this data, the better it is at executing
operations on it. Types are exactly this metadata. Describing this metadata, the
types, takes real effort for the human. Statically typed languages such as C and
Fortran are at one extreme, where all types must be defined and are statically checked
during the compilation phase. The result is excellent performance. Dynamically typed
languages dispense with type definitions, which leads to greater productivity but lower
performance as the compiler and the runtime cannot benefit from the type information
that is essential to producing fast code. Can we strike a balance between the human’s
preference to avoid types and the computer’s need to know?

3.2. Julia’s Recognizable Types. Many users of Julia may never need to know
about types for performance. Julia’s type inference system often does all the work,
giving performance without type declarations.

Shttp://julialang.org/community
Shttps://github.com/shashi/Escher.jl
Thttp://iaindunning.com/2013/sudoku-as-a-service.html
8http://www.juliacon.org

http://julialang.org/community
http://www.juliacon.org

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 75

Julia’s design allows for the gradual learning of concepts, where users start in a
manner that is familiar to them and, over time, learn to structure programs in the
“Julian way”—a term that implies well-structured readable high performance Julia
code. Julia users coming from other numerical computing environments have a notion
that data may be represented as matrices that may be dense, sparse, symmetric,
triangular, or of some other kind. They may also, though not always, know that
elements in these data structures may be single or double precision floating-point
numbers, or integers of a specific width. In more general cases, the elements within
data structures may be other data structures. We introduce Julia’s type system using
matrices and their number types:

In[14]: rand(1,2,1)

Out [14]: 1x2x1 Array{Float64,3}:
[:,:, 1] =
0.789166 0.652002

In[15]: [1 2; 3 4]

Out[15]: 2x2 Array{Int64,2}:
12
34

In[16]: [true; false]

Out[16]: 2-element Array{Bool,1}:
true
false

We see a pattern in the examples above. Array{T,ndims} is the general form of
the type of a dense array with ndims dimensions whose elements themselves have a
specific type T, which is of type double precision floating point in the first example,
a 64-bit signed integer in the second, and a boolean in the third example. Therefore,
Array{T,1} is a one-dimensional vector (first class objects in Julia) with element type
T and Array{T,2} is the type for two-dimensional matrices.

It is useful to think of an array as a generic N-dimensional object that may contain
elements of any type T. Thus, T is a type parameter for an array that can take on many
different values. Similarly, the dimensionality of the array ndims is also a parameter
for the array type. This generality makes it possible to create arrays of arrays. For
example, using Julia’s array comprehension syntax, we create a two-element vector
containing 2 x 2 identity matrices:

In[17]: a = [eye(2) for i=1:2]

Out [17]: 2-element Array{Array{Float64,2},1}:

3.3. User’s Own Types Are First Class Too. Many dynamic languages for nu-
merical computing have traditionally contained an asymmetry, with built-in types
having much higher performance than any user-defined types. This is not the case

76 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

with Julia, where there is no meaningful distinction between user-defined and “built-
in” types.

We have mentioned so far a few number types and two matrix types: Array{T,2},
the dense array with element type T, and SymTridiagonal{T}, the symmetric tridi-
agonal with element type T. There are also other matrix types for other structures in-
cluding SparseMatrixCSC (compressed sparse columns), Hermitian, Triangular, Bidi-
agonal, and Diagonal. Julia’s sparse matrix type has an added flexibility, that it can
go beyond storing just numbers as nonzeros, and can instead store any other Julia
type as well. The indices in SparseMatrixCSC can also be represented as integers of
any width (16-bit, 32-bit, or 64-bit). All these different matrix types, available as
built-in types to a user downloading Julia, are implemented completely in Julia and
are in no way any more or less special than any other types a user may define in their
own program.

For demonstration purposes, we now create a symmetric arrow matrix type that
contains a diagonal and the first row A[1,2:n]. Oce could also throw an ArgumentEr-
ror if the ev vector was not one shorter in length than the dv vector.

In[18]: # Type Parameter Example (Parameter T)
Define a Symmetric Arrow Matrix Type with elements of type T
type SymArrow{T}
dv::Vector{T} # diagonal
ev::Vector{T} # 1st row[2:n]
end
Create your first Symmetric Arrow Matrix
S = SymArrow([1,2,3,4,5],[6,7,8,9])

Out[18]: SymArrow{Int64}([1,2,3,4,5],(6,7,8,9]1)

The parameter in the array refers to the type of each element of the array. Code
can and should be written independently of the type of each element.

In section 4.6.2, we develop the symmetric arrow example much further. The
SymArrow matrix type contains two vectors, one each for the diagonal and the first row,
and these vectors contain elements of type T. In the type definition, the type SymArrow
is parametrized by the type of the storage element T. By doing so, we have created a
generic type, which refers to a universe of all arrow matrices containing elements of
all types. The matrix S is an example where T is Int64. When we write functions
in section 4.6.2 that operate on arrow matrices, those functions themselves will be
generic and applicable to the entire universe of arrow matrices we have defined here.

Julia’s type system allows for abstract types, concrete “bits” types, composite
types, and immutable composite types. All of these types can have parameters and
users may even write programs using unions of them. We refer the reader to full
details about Julia’s type system in the types chapter in the Julia manual.”

3.4. Vectorization: Key Strengths and Serious Weaknesses. Users of tradi-
tional high-level computing languages know that vectorization improves performance.
Do most users know exactly why vectorization is so useful? It is precisely because,

9See http://docs.julialang.org/en/latest /manual /types/

http://docs.julialang.org/en/latest/manual/types/

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 77

by vectorizing, the user has promised the computer that the type of an entire vector
of data matches the very first element. This is an example where users are willing
to provide type information to the computer without even knowing that is what they
are doing. Hence, it is an example of a strategy that balances the computer’s needs
with the human’s.

From the computer’s viewpoint, vectorization means that operations on data
happen largely in sections of the code where types are known to the runtime system.
The runtime has no idea about the data contained in an array until it encounters
the array. Once encountered, the type of the data within the array is known, and
this knowledge is used to execute an appropriate high performance kernel. Of course,
what really occurs at runtime is that the system figures out the type and then reuses
that information through the length of the array. As long as the array is not too
small, all the extra work incurred in gathering type information and acting upon it
at run time is amortized over the entire operation.

The downside of this approach is that the user can achieve high performance
only with built-in types. User-defined types end up being dramatically slower. The
restructuring for vectorization is often unnatural, and at times not possible. We
illustrate this with an example of a cumulative sum computation. Note that due to
the size of the problem, the computation is memory bound, and one does not observe
the case with complex arithmetic to be twice as slower than the real case, even though
it is performing twice as many floating point operations.

In[19]: # Sum prefix (cumsum) on vector w with elements of type T
function prefix{T}(w::Vector{T})
for i=2:size(w,1)
wlil+=w[i-1]
end
w
end

We execute this code on a vector of double precision real numbers and double
precision complex numbers and observe something that may seem remarkable: similar
run times in each case.

In[20]: x = ones(1.000_000)
@time prefix(x)

y = ones(1.000_000) + im*ones(1-000-000)
@time prefix(y);

Out[20]: elapsed time: 0.003243692 seconds (80 bytes allocated)
elapsed time: 0.003290693 seconds (80 bytes allocated)

This simple example is difficult to vectorize, and hence is often provided as a built-
in function in many numerical computing systems. In Julia, the implementation is
very similar to the snippet of code above and runs at speeds similar to C. While Julia
users can write vectorized programs as in any other dynamic language, vectorization
is not a prerequisite for performance. This is because Julia strikes a different balance

78 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

between the human and the computer when it comes to specifying types. Julia allows
optional type annotations, which are essential when writing libraries but not for end-
user programs that are exploring algorithms or a dataset.

Generally, in Julia, type annotations are not used for performance, but purely
for code selection (see section 4). If the programmer annotates their program with
types, the Julia compiler will use that information. However, in general, user code
often includes minimal or no type annotations, and the Julia compiler automatically
infers the types.

3.5. Type Inference Rescues “For Loops’ and So Much More. A key compo-
nent of Julia’s ability to combine performance with productivity in a single language
is its implementation of dataflow type inference [24, 17, 4]. Unlike type inference al-
gorithms for static languages, this algorithm is tailored to the way dynamic languages
work: the typing of code is determined by the flow of data through it. The algorithm
works by walking through a program, starting with the types of its input values, and
“abstractly interpreting” it: instead of applying the code to values, it applies the
code to types, following all branches concurrently and tracking all possible states the
program could be in, including all the types each expression could assume.

The dataflow type inference algorithm allows programs to be automatically an-
notated with type bounds without forcing the programmer to explicitly specify types.
Yet, in dynamic languages it is possible to write programs which inherently cannot be
concretely typed. In such cases, dataflow type inference provides what bounds it can,
but these may be trivial and useless—i.e., they may not narrow down the set of possi-
ble types for an expression at all. However, the design of Julia’s programming model
and standard library are such that a majority of expressions in typical programs can
be concretely typed.

A lesson of the numerical computing languages is that one must learn to vectorize
to get performance. The mantra is “for loops” are bad, vectorization is good. Indeed
one can find the following mantra on p.72 of the 1998 Getting Started with MATLAB
manual (and other editions):

Experienced MATLAB users like to say “Life is too short to spend writing
for loops.”

It is not that “for loops” are inherently slow in themselves. The slowness comes
from the fact that in the case of most dynamic languages, the system does not have
access to the types of the variables within a loop. Since programs often spend much of
their time doing repeated computations, the slowness of a particular operation due to
lack of type information is magnified inside a loop. This leads to users often talking
about “slow for loops” or “loop overhead.”

4. Code Selection: Run the Right Code at the Right Time. Code selection or
code specialization from one point of view is the opposite of the code reuse enabled
by abstraction. Ironically, viewed another way, it enables abstraction. Julia allows
users to overload function names and select code based on argument types. This can
happen at the highest and lowest levels of the software stack. Code specialization lets
us optimize for the details of the case at hand. Code abstraction lets calling codes,
even those not yet written or perhaps not even imagined, work on structures that
may not have been envisioned by the original programmer.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 79

We see this as the ultimate realization of the famous 1908 quip that
Mathematics is the art of giving the same name to different things.'°

by noted mathematician Henri Poincaré.

In the next section we provide examples of how “plus” can apply to so many
objects, such as floating-point numbers or integers. It can also apply to sparse and
dense matrices. Another example is the use of the same name, “det,” for determinant,
for the very different algorithms that apply to very different matrix structures. The use
of overloading not only for single argument functions, but also for multiple argument
functions, is already a powerful abstraction.

4.1. Multiple Dispatch. Multiple dispatch is the selection of a function imple-
mentation based on the types of each argument of the function. It is not only a nice
notation to remove a long list of “case” statements, but is also part of the reason for
Julia’s speed. It is expressed in Julia by annotating the type of a function argument
in a function definition with the following syntax: argument: :Type.

Mathematical notations that are often used in print can be difficult to employ in
programs. For example, we can teach the computer some natural ways to multiply
numbers and functions. Suppose that a and ¢ are scalars, and f and g are functions,
and we wish to define the following operations:

1. Number x Function = scale output: a * g is the function that takes x
to a * g(x);
2. Function x Number = scale argument : f xt is the function that takes

x to f(tx); and
3. Function x Function = composition of functions: f * g is the function
that takes x to f(g(x)).
If you were a mathematician who does not program, you would not see the fuss.
If, however, you wanted to implement this in your favorite computer language, you
might immediately see the benefit. In Julia, multiple dispatch makes all three uses of

10A few versions of Poincaré’s quote are relevant to Julia’s power of abstraction and numerical
computing. They are worth pondering;:

It is the harmony of the different parts, their symmetry, and their happy adjustment; it
is, in a word, all that introduces order, all that gives them unity, that enables us to obtain
a clear comprehension of the whole as well as of the parts. Elegance may result from
the feeling of surprise caused by the unlooked-for occurrence of objects not habitually
associated. In this, again, it is fruitful, since it discloses thus relations that were until
then unrecognized. Mathematics is the art of giving the same names to different things.

(http://www.nieuwarchief.nl/serie5/pdf/naw5-2012-13-3-154.pdf)

One example has just shown us the importance of terms in mathematics; but I could
quote many others. It is hardly possible to believe what economy of thought, as Mach
used to say, can be effected by a well-chosen term. I think I have already said somewhere
that mathematics is the art of giving the same name to different things. It is enough
that these things, though differing in matter, should be similar in form, to permit of their
being, so to speak, run in the same mould. When language has been well chosen, one is
astonished to find that all demonstrations made for a known object apply immediately to
many new objects: nothing requires to be changed, not even the terms, since the names
have become the same.

(http://www-history.mcs.st-andrews.ac.uk /Extras/Poincare_Future.html)

http://www.nieuwarchief.nl/serie5/pdf/naw5-2012-13-3-154.pdf
http://www-history.mcs.st-andrews.ac.uk/Extras/Poincare_Future.html

80 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

L] M

Fig. 2 Gauss quote hanging from the ceiling of the longstanding Boston Museum of Science Math-
ematica Exhibit.

“x” easy to express:

In[21]: *(a::Number, g::Function)= x->a*g(x) # Scale output
*(f::Function,t: :Number) = x->f (t*x) # Scale argument
x(f::Function,g: :Function)= x->f(g(x)) # Function composition

Here, multiplication is dispatched by the type of its first and second arguments.
It is implemented in the usual way if both are numbers, but there are three new ways
if one, the other, or both are functions.

These definitions exist as part of a larger system of generic definitions, which can
be reused by later definitions. Consider the case of the mathematician Gauss’s prefer-
ence for sin? ¢ to refer to sin(sin(¢)) and not sin(¢)? (writing “sin®(¢) is odious to me,
even though Laplace made use of it.” (see Figure 2). By defining *(f: :Function,
g::Function)= x->f(g(x)), (£°2) (x) automatically computes f(f(x)), as Gauss
wanted. This is a consequence of a generic definition that evaluates x“2 as x*x no
matter how x*x is defined.

This paradigm is a natural fit for numerical computing, since so many important
operations involve interactions among multiple values or entities. Binary arithmetic
operators are obvious examples, but many other uses abound. The fact that the
compiler can pick the sharpest matching definition of a function based on its input
types helps achieve higher performance, by keeping the code execution paths tight
and minimal.

We have not seen this elsewhere in the literature but it seems worthwhile to point
out four dispatch possibilities:

1. Static single dispatch (not done).

2. Static multiple dispatch (frequent in static languages, e.g., C++ overloading).

3. Dynamic single dispatch (MATLAB’s object oriented system might fall into
this category, though it has its own special characteristics).

4. Dynamic multiple dispatch (usually just called multiple dispatch).

In section 4.4 we discuss the comparison with traditional object oriented ap-
proaches. Class-based object oriented programming could reasonably be called dy-

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 8l

namic single dispatch, and overloading could reasonably be called static multiple
dispatch. Julia’s dynamic multiple dispatch approach is more flexible and adaptable
while still retaining powerful performance capabilities. Julia programmers often find
that dynamic multiple dispatch makes it easier to structure their programs in ways
that are closer to the underlying science.

4.2. Code Selection from Bits to Matrices. Julia uses the same mechanism for
code selection at all levels, from the top to the bottom.

f Function Operand Types
Low-Level “+” Add Numbers {Float , Int}
High-Level “4” Add Matrices {Dense Matrix , Sparse Matrix}

“xR Scale or Compose {Function , Number }

4.2.1. Summing Numbers: Floats and Ints. We begin at the lowest level. Math-
ematically, integers are thought of as being special real numbers, but on a computer,
an Int and a Float have two very different representations. Ignoring for a moment
that there are even many choices of Int and Float representations, if we add two num-
bers, code selection based on numerical representation is taking place at a very low
level. Most users are blissfully unaware of this code selection, because it is hidden
somewhere that is usually off-limits. Nonetheless, one can follow the evolution of the
high-level code all the way down to the assembler level, which will ultimately reveal
an ADD instruction for integer addition and, for example, the AVX!! instruction
VADDSD!? for floating-point addition in the language of x86 assembly level instruc-
tions. The point here is that ultimately two different algorithms are being called, one
for a pair of Ints and one for a pair of Floats.

Figure 3 takes a close look at what a computer must do to perform x+y depending
on whether (x,y) is (Int,Int), (Float,Float), or (Int,Float), respectively. In the first
case, an integer add is called, while in the second case a float add is called. In the
last case, a promotion of the int to float is implemented with the x86 instruction
VCVTSI2SD,!3 and then the float add follows.

It is instructive to build a Julia simulator in Julia itself.

In[26]: # Simulate the assembly level add, vaddsd, and vcvtsi2sd

commands

add(x::Int ,y::Int) = x+y
vaddsd(x: :Float64,y: :Float64) = x+y
vevtsi2sd(x: :Int) = float(x)

In[27]: # Simulate Julia’s definition of + using @
To type @, type as in TeX, \oplus and hit the <tab> key

@ (x::Int, y::Int) = add(x,y)
@ (x::Float64,y: :Float64) = vaddsd(x,y)
@ (x::Int, y::Float64) = vaddsd(vcvtsi2sd(x),y)

@ (x::Float64,y: :Int) =y d x
In[28]: methods(®)

1TAVX: Advanced Vector eXtension to the x86 instruction set

12VADDSD: Vector ADD Scalar Double-precision

1BYVCVTSI2SD: Vector ConVerT Doubleword (Scalar) Integer to (2) Scalar Double Precision
Floating-Point Value T

82 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

In[22]: f(a,b) =a +b

Out [22] : f (generic function with 1 method)

In[23]: # Ints add with the x86 add instruction
@code_native f(2,3)

Out [23]: push RBP
mov RBP, RSP
add RDI, RSI
mov RAX, RDI
pop RBP
ret

In[24]: # Floats add, for example, with the x86 vaddsd instruction
@code_native £(1.0,3.0)

Out[24]: push RBP
mov RBP, RSP
vaddsd XMMO, XMMO, XMM1
pop RBP
ret

In[25]: # Int + Float requires a convert to scalar double precision,
hence
the x86 vcvtsi2sd instruction
@code_native f(1.0,3)

Qut[25]: push RBP
mov RBP, RSP
vcvtsi2sd XMM1, XMMO, RDI
vaddsd XMMO, XMM1, XMMO
pop RBP
ret

Fig. 3 While assembly code may seem intimidating, Julia disassembles readily. Armed with
the codemnative command in Julia and perhaps a good list of assembler commands such
as may be found on http://docs.oracle.com/cd/E36784.01/pdf/E36859.pdf or http://en.
wikipedia.org/wiki/X86_instruction_listings, one can really learn to see the details of code
selection in action at the lowest levels. More importantly, one can begin to understand that
Julia is fast because the assembly code produced is so tight.

Out [28]: 4 methods for generic function @:
@ (x::Int64,y::Int64) at In[23]:3
@ (x::Float64,y::Float64) at In[23]:4
@ (x::Int64,y::Float64) at In[23]:5
@ (x::Float64,y::Int64) at In[23]:6

4.2.2. Summing Matrices: Dense and Sparse. We now move to a much higher
level: matrix addition. The versatile “+” symbol lets us add matrices. On a com-
puter, dense matrices are (usually) contiguous blocks of data with a few parameters

http://docs.oracle.com/cd/E36784_01/pdf/E36859.pdf
http://en.wikipedia.org/wiki/X86_instruction_listings
http://en.wikipedia.org/wiki/X86_instruction_listings

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 83

attached, while sparse matrices (which may be stored in many ways) require storage
of index information one way or another. If we add two matrices, code selection must
take place depending on whether the summands are (dense,dense), (dense,sparse),
(sparse,dense), or (sparse,sparse).

While this is at a much higher level, the basic pattern is unmistakably the same
as that of section 4.2.1. We show how to use a dense algorithm in the implementation
of @ when either A or B (or both) are dense. A sparse algorithm is used when both
A and B are sparse.

In[29]: # Dense + Dense
@ (A: :Matrix, B::Matrix) =
[A[i,j]1+B[i,j] for i in 1:size(A,1),j in 1:size(A,2)]
Dense + Sparse
@ (A::Matrix, B::AbstractSparseMatrix)
Sparse + Dense
@ (A: :AbstractSparseMatrix,B::Matrix) = B @ A # Use Dense + Sparse
Sparse + Sparse is best written using the long form function definition:

A © full(B)

function @ (A::AbstractSparseMatrix, B::AbstractSparseMatrix)
C=copy (4)
(i,j)=findn(B)
for k=1:length(i)
Clilk],jlkI1+=B[ilk],j[k]]
end
return C
end

We have eight methods for the function @, four for the low-level sum, and four
more for the high level:

In[30]: methods(®)

Out[30]: 8 methods for generic function &:

(x::Int64,y::Int64) at In[23]:3

(x::Float64,y: :Float64) at In[23]:4

(x::Int64,y::Float64) at In[23]:5

(x::Float64,y::Int64) at In[23]:6

(A::Array{T,2},B::Array{T,2}) at In[29]:1

(A::Array{T,2},B: :AbstractSparseArray{Tv,Ti,2}) at In[29]:1
(A::AbstractSparseArray{Tv,Ti,2},B: :Array{T,2}) at In[29]:1
(A::AbstractSparseArray{Tv,Ti,2},B: :AbstractSparseArray{Tv,Ti,2})

PODDDDDD

4.3. The Many Levels of Code Selection. In Julia, as in mathematics, functions
are as important as the data they operate on, their arguments, and perhaps even more
so. We can create a new function foo and gave it six definitions depending on the
combination of types. In the following example we sensitize unfamiliar readers with
terms from computer science language research. It is not critical that these terms be
understood all at once.

84 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

In[31]: # Define a generic function with 6 methods.
In Julia generic functions are far more convenient than the
multitude of case statements seen in other languages. When Julia
sees foo, it decides which method to use, rather than first seeing
and deciding based on the type.
foo() = "Empty input"
foo(x::Int) = x
foo(S::String) = length(S)
foo(x::Int, S::String) = "An Int and a String"
foo(x::Float64,y: :Float64) = sqrt(x"2+y~2)
foo(a::Any,b: :String)= "Something more general than an Int and a String"
The function name foo is overloaded. This is an example of
polymorphism.
In the jargon of computer languages this is called ad-hoc
polymorphism.
The multiple dynamic dispatch idea captures the notion that the
generic function is deciphered dynamically at runtime. One of the
six choices will be made or an error will occur.
Out[31]: foo (generic function with 6 methods)

Any one instance of foo is a method. The collection of six methods is referred to
as a generic function. The word “polymorphism” refers to the use of the same name
(foo, in this example) for functions with different types. Contemplating the Poincaré
quote in footnote 5, it is handy to reason about everything to which you are giving the
same name. In actual coding, one tends to use the same name when the abstraction
makes a great deal of sense, so we use the same name “+” for ints, floats, dense, and
sparse matrices. Methods are grouped into generic functions.

While mathematics is the art of giving the same name to seemingly different
things, a computer eventually has to execute the right program in the right circum-
stance. Julia’s code selection operates at multiple levels in order to translate a user’s
abstract ideas into efficient execution. A generic function can operate on several ar-
guments, and the method with the most specific signature matching the arguments is
invoked. It is worth crystallizing some key aspects of this process:

1. The same name can be used for different functions in different circumstances.
For example, select may refer to the selection algorithm for finding the kth
smallest element in a list, or to select records in a database query, or simply
to a user-defined function in a user’s own program. Julia’s namespaces allow
the usage of the same vocabulary in different circumstances in a simple way
that makes programs easy to read.

2. A collection of functions that represent the same idea but operate on different
structures are naturally referred to by the same name. The particular method
called is based entirely on the types of all the arguments—this is multiple
dispatch. The function det may be defined for all matrices at an abstract
level. However, for reasons of efficiency, Julia defines different methods for
different types of matrices, depending on whether they are dense or sparse or
have a special structure such as diagonal or tridiagonal.

3. Within functions that operate on the same structure, there may be further
differences based on the different types of data contained within. For example,
whether the input is a vector of Float64 values or Int32 values, the norm

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 85

* Polymorphic Java Example. Method defined by types of two arguments. *\

public class OverloadedAddable {

public int addthem(int i, int £} {
return i+f;

}

public double addthem(int i, double f} {
return i+f;

}

public double addthem(double i, int f} {
return i+f;

}

public double addthem(double i, double £} {
return i+f;

}

Fig. 4 Advantages of Julia: It is true that this Java code is polymorphic, based on the types of the
two arguments. (“Polymorphism” means the use of the same name for a function that may
have different type arguments.) However, in Java if the method addthem is called, the types
of the arguments must be known at compile time. This is static dispatch. Java is also encum-
bered by encapsulation: in this case addthem is encapsulated inside the OverloadedAddable
class. While this is considered a safety feature in the Java culture, it becomes a burden for
numerical computing.

is computed in exactly the same way, with a common body of code, but
the compiler is able to generate different executable code from the abstract
specification.

4. Julia uses the same mechanism of code selection at the lowest and highest
levels, whether it is performing operations on matrices or operations on bits.
As a result, Julia is able to optimize the whole program, picking the right
method at the right time, either at compile time or run time.

4.4. Is “Code Selection” Traditional Object Oriented Programming? The
method to be executed in Julia is not chosen by only one argument, which is what
happens in the case of single dispatch, but through multiple dispatch, which considers
the types of all the arguments. Julia is not burdened by the encapsulation restric-
tions (class based methods) of most object oriented languages: The generic functions
play a more important role than the data types. Some call this type of language
“verb” based as opposed to most object oriented languages being “noun” based. In
numerical computing, it is the concept of “solve Ax = b” that often seems to be more
fundamental, at the highest level, rather than whether the matrix A is full, sparse, or
structured. Readers familiar with Java might think, “So what? One can easily create
methods based on the types of the arguments.” An example is provided in Figure 4.
However, a moment’s thought shows that the following dynamic situation in Julia is
impossible to express in Java:

(Here we use the ternary conditional: if_condition 7 value_if_true : value_
if_false.)

86 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

In[32]: # It is possible for a static compiler to know that x,y are
Float
x = rand(Bool) 7 1.
y = rand(Bool) 7 1.
x+y

0: 2.0
0: 2.0

It is impossible to know until runtime if x,y are Int or
Float

x = rand(Bool) 7 1 : 2.
y = rand(Bool) ? 1 : 2.
X+y

0
0

Readers may be familiar with the single dispatch mechanism, as in MATLAB.
This implementation is unusual in that it is not completely class based, as the code
selection is based on MATLAB’s own custom hierarchy. In MATLAB the leftmost
object has precedence, but user-defined classes have precedence over built-in classes.
MATLAB also has a mechanism to create a custom hierarchy.

Julia generally shuns the notion of “built-in” vs. “user-defined,” preferring instead
to focus on the method to be performed based on the combination of types and
obtaining high performance as a byproduct. A high-level library writer, who we do
not distinguish from any other user, has to match the best algorithm to the best input
structure. A sparse matrix matches to a sparse routine, a dense matrix to a dense
routine. A low-level language designer has to make sure that integers are added with
an integer adder, and floating-point numbers are added with a float adder. Despite
the very different levels, the reader might recognize that fundamentally, these are
both examples of code being selected to match the structure of the problem.

Readers familiar with object oriented paradigms such as C++ or Java are likely
familiar with the approach of encapsulating methods inside classes. Julia’s more gen-
eral multiple dispatch mechanism (also known as generic functions, or multi-methods)
is a paradigm in which methods are defined on combinations of data types (classes).
Julia has proven that this is remarkably well suited for numerical computing. As an
aside, in Julia, method ambiguities throw a warning.

A class based language might express the sum of a sparse matrix with a full ma-
trix as follows: A_sparse matrix.plus(A_full matrix). Similarly, it might express
indexing as A_sparse matrix.sub(A_full matrix). If a tridiagonal were added to
the system, one would have to find the method plus or sub which are encapsulated in
the sparse matrix class, modify it, and test it. Similarly, one has to modify every full
matrix method, etc. We believe that class based methods, which can be taken quite
far, are not sufficiently powerful to express the full gamut of abstractions in scientific
computing. Furthermore, the burdens of encapsulation create a wall around objects
and methods that are counterproductive for numerical computing.

The generic function idea captures the notion that a method for a general op-
eration on pairs of matrices might exist (e.g., “4”), but if a more specific operation
is possible (e.g., “+” on sparse matrices or “+” on a special matrix structure like
Bidiagonal), then that more specific operation is used. We also mention indexing as
another example: why should the indexee take precedence over the index?

4.5. Quantifying the Use of Multiple Dispatch. In [3] we performed an analysis
to substantiate the claim that multiple dispatch, an esoteric idea for numerical com-

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 87

Table | A comparison of Julia (1208 functions exported from the Base library) to other languages
with multiple dispatch. The “Julia operators” row describes 47 functions with special syntaz
(binary operators, indexing, and concatenation). Data for other systems are from [26]. The
results indicate that Julia is using multiple dispatch far more heavily than previous systems.

[Language [DR [CR [DoS]
Gwydion 1.74 | 18.27 | 2.14
OpenDylan 2.51 | 43.84 | 1.23
CMUCL 2.03 6.34 1.17
SBCL 2.37 | 26.57 | 1.11
McCLIM 2.32 | 15.43 1.17
Vortex 2.33 | 63.30 | 1.06
Whirlwind 2.07 | 31.65 | 0.71
NiceC 1.36 3.46 | 0.33
LocStack 1.50 8.92 | 1.02
Julia 5.86 | 51.44 1.54
Julia operators | 28.13 | 78.06 | 2.01

puting from computer languages, finds its killer application in scientific computing.
We wanted to answer for ourselves the question of whether there was really anything
different about how Julia uses multiple dispatch.

Table 1 gives an answer in terms of dispatch ratio (DR), choice ratio (CR), and
degree of specialization (DoS). While multiple dispatch is an idea that has been cir-
culating for some time, its application to numerical computing appears to have sig-
nificantly favorable characteristics compared to previous applications.

To quantify how heavily a language feature is used, we use the following met-
rics [26]:

1. Dispatch ratio: The average number of methods in a generic function.

2. Choice ratio: For each method, the total number of methods over all generic
functions it belongs to, averaged over all methods. This is essentially the sum
of the squares of the number of methods in each generic function, divided by
the total number of methods. The intent of this statistic is to give more
weight to functions with a large number of methods.

3. Degree of specialization: The average number of type-specialized arguments
per method.

Table 1 shows the mean of each metric over the entire Julia Base library, showing
a high degree of multiple dispatch compared with corpora in other languages [26].
Compared to most multiple dispatch systems, Julia functions tend to have a large
number of definitions. To see why this might be so, it helps to compare results
from a biased sample of common operators. These functions are the most obvious
candidates for multiple dispatch, and as a result their statistics climb dramatically.
Julia is focused on numerical computing, and so is likely to have a large proportion
of functions with this characteristic.

4.6. Case Study for Numerical Computing. The complexity of linear algebra
software has been nicely captured in the context of LAPACK and ScaLAPACK by
Demmel, Dongarra et al. [7] and is reproduced verbatim here:

(1) for all linear algebra problems
(linear systems, eigenproblems, ...)
(2) for all matrix types
(general, symmetric, banded, ...)

88 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

(3 for all data types
(real, complex, single, double, higher precision)
4 for all machine architectures
and communication topologies
(5) for all programming interfaces provide the
(6) best algorithm(s) available in terms of

performance and accuracy ("algorithms"
is plural because sometimes no single
one is always best)

In the language of computer science, code reuse is about taking advantage of
polymorphism. In the general language of mathematics it’s about taking advantage
of abstraction, or the sameness of two things. Either way, programs are efficient,
powerful, and maintainable if programmers are given powerful mechanisms to reuse
code.

Increasingly, the applicability of linear algebra has gone well beyond the world
of floating-point numbers. These days linear algebra is performed on high precision
numbers, integers, elements of finite fields, and rational numbers. There will always be
a special place for the BLAS and the performance it provides for floating-point num-
bers. Nevertheless, linear algebra operations transcend any one data type. One must
be able to write a general implementation and, as long as the necessary operations
are available, the code should just work [27]. That is the power of code reuse.

4.6.1. Determinant: Simple Single Dispatch. In traditional numerical comput-
ing there are people with special skills known as library writers. Most users are, well,
just users of libraries. In this case study, we show how anybody can dispatch a new
determinant function based solely on the type of the argument.

For triangular and diagonal structures, obvious formulas are used. For general
matrices, the QR decomposition yields the determinant as the product of the diagonal
elements of R.' For symmetric tridiagonals the usual three-term recurrence formula
[31] is used. (The first four are defined as one line functions; the symmetric tridiagonal
uses the long form.)

In[33]: # Simple determinants defined using the short form for functions
newdet (x: :Number) = x
newdet (A: :Diagonal) = prod(diag(A))
newdet (A::Triangular) = prod(diag(A))
newdet (A: :Matrix) = -prod(diag(qrfact(full(A)) [:R]1))*(-1) size(A,1)
Tridiagonal determinant defined using the long form for functions
function newdet (A::SymTridiagonal)
Assign c and d as a pair
c,d =1, A[1,1]
for i=2:size(A,1)
temp=d, d=the expression, c=temp
c,d =d, d*xA[i,i]-cxA[i,i-1]"2
end
d
end

141,U is more efficient. We simply wanted to illustrate that other ways are possible.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 89

We have illustrated a mechanism to select a formula at run time based on the
input type.

4.6.2. A Symmetric Arrow Matrix Type. There exist matrix structures and
operations on those matrices. In Julia, these structures exist as Julia types. Julia has
a number of predefined matrix structure types: (dense) Matrix, (compressed sparse
column) SparseMatrixCSC, Symmetric, Hermitian, SymTridiagonal, Bidiagonal,
Tridiagonal, Diagonal, and Triangular are all examples of its matrix structures.

The operations on these matrices exist as Julia functions. Familiar examples
of operations are indexing, determinant, size, and matrix addition. Since matrix
addition takes two arguments, it may be necessary to reconcile two different types
when computing the sum.

In the following Julia example, we illustrate how the user can add symmetric
arrow matrices to the system, and then add a specialized det method to compute
the determinant of a symmetric arrow matrix efficiently. We build on the symmetric
arrow type introduced in section 3.3.

In[34]: # Define a Symmetric Arrow Matrix Type
immutable SymArrow{T} <: AbstractMatrix{T}
dv::Vector{T} # diagonal
ev::Vector{T} # 1st row[2:n]
end

In[35]: # Define its size
importall Base
size(A::SymArrow, dim::Integer) = size(A.dv,1)
size(A: :SymArrow)= size(A,1), size(A,1)

Out[35]: size (generic function with 52 methods)

In[36]: # Index into a SymArrow
function getindex(A::SymArrow,i::Integer,j::Integer)
if i==j; return A.dv[i]

elseif i==1; return A.ev[j-1]
elseif j==1; return A.ev[i-1]
else return zero(typeof (A.dv[1]))
end
end
Out [36] : getindex (generic function with 168 methods)
In[37]: # Dense version of SymArrow

full(A::SymArrow) =[A[i,j] for i=1:size(A,1), j=1l:size(A,2)]

Out[37]: full (generic function with 17 methods)

In[38]: # An example
S=SymArrow([1,2,3,4,5],[6,7,8,9])

90 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

Out [38]: 5x5 S

© 00N O =
O O o N O

In[39]: # det for SymArrow (external dispatch example)
function exc_prod(v) # prod(v)/v[il]
[prod(v[[1:(i-1),(i+1):end]]) for i=1:size(v,1)]
end
det for SymArrow formula
det (A::SymArrow) = prod(A.dv)-sum(A.ev. 2.*exc_prod(A.dv[2:end]))

Out [39] : det (generic function with 17 methods)

The above Julia code uses the formula det(A) = [T7_, di — 3215 €7 [Tocjsicn 45
valid for symmetric arrow matrices where d is the diagonal and e is the first row
starting with the second entry.

In some numerical computing languages, a function might begin with a lot of
argument checking to pick which algorithm to use. In Julia, one creates a number of
methods. Thus, newdet as defined by In [33] on a diagonal is one method for newdet,
and newdet on a triangular matrix is a second method. In practice, one would overload
det itself as shown in In [39] for SymArrow matrices: det on a SymArrow is a new
method for det. (See section 4.6.1.)

We have now seen a number of examples of code selection for single dispatch, i.e.,
the selection of code based on the type of a single argument. We might notice that a
symmetric arrow plus a diagonal does not require operations on full dense matrices.
The code below starts with the most general case, and then allows for specialization
for the symmetric arrow and diagonal sum:

In[40]: # SymArrow + Any Matrix: (Fallback: add full dense arrays)
+(A::SymArrow, B::Matrix) = full(A)+B
+(B::Matrix, A::SymArrow) = A+B # Define B+A as A+B
SymArrow + Diagonal: (Special case: add diagonals, copy
off-diagonal)
+(A: :SymArrow, B::Diagonal) = SymArrow(A.dv+B.diag,A.ev)
+(B::Diagonal, A::SymArrow) = A+B

5. Leveraging Design for High Performance Libraries. Seemingly innocuous
design choices in a language can have profound, pervasive performance implications.
These are often overlooked in languages that were not designed from the beginning
to be able to deliver excellent performance. See Figure 5. Other aspects of language
and library design affect the usability, composability, and power of the provided func-
tionality.

5.1. Integer Arithmetic. A simple but crucial example of a performance-critical
language design choice is integer arithmetic. Consider what happens if we make a fixed

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 91

104
(]
()
103 g ()
8 8 benchmark
) @ rand_mat_mul
10 °® 8 rand_mat_stat
()) € L] .
@ Pi_sum
() 8 @ printfd
10! ® 8 e « © mandel
o : ® . @ quicksort
Ps P (] ® o fib
8 (6] e @ Darse_int
160] 8)])
{]

107!

Julia Fortran Go JavaScript Python Mathematica R Matlab Octave

Fig. 5 Performance comparison of various languages performing simple microbenchmarks. Bench-
mark execution time relative to C. (Smaller is better; C performance = 1.0.)

number of loop iterations on an integer argument:

In[41]: # 10 Iterations of f(k)=bk-1 on integers
function g(k)

for i = 1:10
k = f(k)
end
k
end
Out [41]: g (generic function with 2 methods)

In[42]: codenative(g,(Int,))

Out [42] : imul RAX, RDI, 9765625
add RAX, -2441406
Because the compiler knows that integer addition and multiplication are associa-
tive and that multiplication distributes over addition, it can optimize the entire loop
down to just a multiply and an add. Indeed, if f(k) = 5k — 1, it is true that the
tenfold iterate (19 (k) = —2441406 4 9765625k.

5.2. A Powerful Approach to Linear Algebra.

5.2.1. Matrix Factorizations. We describe how Julia’s features have been used
to provide a powerful approach to linear algebra [27]. For decades, orthogonal matrices
have been represented internally as products of Householder matrices displayed for
humans as matrix elements. LU factorizations are often performed in place, storing
the L and U information together in the data locations originally occupied by A. All
this speaks to the fact that matrix factorizations deserve a natural place in a linear
algebra library.

In Julia, thanks to the contributions of Andreas Noack [27] and many others,
these structures are indeed first class objects. The structure QRCompactWYQ holds a

92 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

compact) and an R in memory. Similarly, an LU holds an L and a U in packed form
in memory. Through the magic of multiple dispatch, we can solve linear systems,
extract the pieces, and do least squares directly on these structures.

The QR example is even more fascinating. Suppose one computes QR of a 4 x 3
matrix. What is the size of Q7 The right answer, of course, is that it depends: it
could be 4 x 4 or 4 x 3. The underlying representation is the same: It is the product
of three Householder matrices.

In Julia one can compute Aqr = qrfact(rand(4,3)), then one can extract Q
from the factorization with Q=Aqr[:Q]. (Note that :Q is a symbol; the syntax Aqr [: Q]
is a shorthand for Base.LinAlg.getq(Aqr).)

This @ retains its clever underlying structure and is therefore efficient and applica-
ble when multiplying vectors of length 4 or length 3, contrary to the rules of freshman
linear algebra, but welcome in numerical libraries for saving space and enabling faster
computations.

In[43]: A=[1 23
121
101
10 -1]
Aqr = qgrfact(A);
Q = Aqr[:Q]
Out[43]: 4x4 Base.LinAlg.QRCompactWYQ{Float64,Array{Float64,2}}:

-0.5 -0.5 -0.5 -0.5
-0.5 -0.5 0.5 0.5
-0.5 0.5 -0.5 0.5
-0.5 0.5 0.5 -0.5

In[44]: Qx[1,0,0,0]

Out [44] : 4-element Array{Float64,1}:
-0.5
-0.5
-0.5
-0.5

In[45]: Q@x[1, 0, 0]

Out [45] : 4-element Array{Float64,1}:
-0.5
-0.5
-0.5
-0.5

5.2.2. User-Extensible Wrappers for BLAS and LAPACK. The tradition is to
leave the coding to LAPACK writers and call LAPACK for speed and accuracy. This
has worked fairly well, but Julia exposes considerable opportunities for improvement.

Julia users have access to a variety of linear algebra operations available directly
from Julia without needing to know anything about LAPACK. All of LAPACK is
available, not just the most common functions. LAPACK wrappers are implemented

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 93

fully in Julia code, using ccall,'® which does not require a C compiler and can be
called directly from the interactive Julia prompt.

Consider the Cholesky factorization by calling LAPACK’s xPOTRF. It uses Julia’s
metaprogramming facilities to generate four functions, corresponding to the xPOTRF
functions for Float32, Float64, Complex64, and Complex128 types. The call to the
Fortran functions is wrapped in ccall.

In[46]: # Generate calls to LAPACK’s Cholesky for double, single, etc.
xPOTRF refers to POsitive definite TRiangular Factor
LAPACK signature: SUBROUTINE DPOTRF(UPLO, N, A, LDA, INFO)

* UPLO (input) CHARACTER*1

* N (input) INTEGER

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* LDA (input) INTEGER

* INFO (output) INTEGER

Generate Julia method potrf!

for (potrf, elty) in # Run through 4 element types

((:dpotrf_, :Float64),
(:spotrf_,:Float32),
(:zpotrf_, :Complex128),
(:cpotrf_, :Complex64))

Begin function potrf!
Q@eval begin
function potrf!(uplo::Char, A::StridedMatrix{$eltyl})
lda = max(1,stride(A,2))
1da==0 && return A, O
info = Array(Int, 1)

Call to LAPACK:ccall(LAPACKroutine,Void,PointerTypes,JuliaVariables)

ccall(($(string(potrf)),:liblapack), Void,
(Ptr{Char}, Ptr{Int}, Ptr{$elty}, Ptr{Int}, Ptr{Int}),
&uplo, &size(A,1), A, &lda,

info)

return A, infol[1]

end
end

end
chol(A::Matrix) = potrf!(’U’, copy(A))

5.3. High Performance Polynomials and Special Functions with Macros. Ju-
lia has a macro system that provides custom code generation, providing performance
that is otherwise difficult to achieve. A macro is a function that runs at parse time,
takes symbolic expressions in, and returns transformed expressions out, which are
inserted into the code for later compilation. For example, a library developer has
implemented an @evalpoly macro that uses Horner’s rule to evaluate polynomials
efficiently. Consider

In[47]: @evalpoly(10,3,4,5,6)

5http://docs.julialang.org/en/latest /manual/calling-c-and-fortran-code/

http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/

94 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

which returns 6543 (the polynomial 3 + 4z + 522 + 62°, evaluated at 10 with Horner’s
rule). Julia allows us to see the inline generated code with the command

In[48]: macroexpand(:@evalpoly(10,3,4,5,6))
We reproduce the key lines below

Out [48] : #471#t = 10 # Store 10 into a variable named #471#t
Base.Math.+(3,Base.Math.*(#471#t,Base.Math.+(4,Base.Math.*
(#471#t ,Base.Math.+(5,Base.Math. * (#471#t,6))))))

This code-generating macro only needs to produce the correct symbolic structure,
and Julia’s compiler handles the remaining details of fast native code generation. Since
polynomial evaluation is so important for numerical library software it is critical that
users can evaluate polynomials as fast as possible. The overhead of implementing an
explicit loop, accessing coefficients in an array, and possibly a subroutine call (if it is
not inlined) is substantial compared to just inlining the whole polynomial evaluation.

The polynomial macro may be expanded to work on a matrix first argument by
defining Base .muladd (x,y,z)=x*xy+z*I.

5.4. Easy and Flexible Parallelism. Parallel computing remains an important
research topic in numerical computing, and has yet to reach the level of richness and
interactivity required. The issues discussed in section 3.1 on the balance between the
human and the computer become more pronounced in the parallel setting. Part of
the problem is that parallel computing means different things to different people:

1. At the most basic level, one wants instruction-level parallelism within a CPU
and expects the compiler to discover such parallelism. In Julia, this can be
achieved with the @simd primitive.

2. In order to utilize multicore and manycore CPUs on the same node, one wants
multithreading. Currently, we have experimental multithreading support in
Julia, and this will be the topic of a further paper. Julia currently does
provide a SharedArray data structure where the same array in memory can
be operated on by multiple different Julia processes on the same node.

3. Distributed memory is often considered to be the most difficult model. This
can mean running Julia on anything from half a dozen and thousands of
nodes, each with multicore CPUs.

Our experience with Star-P [5] taught us valuable lessons. Star-P parallelism
[14, 13] includes global dense, sparse, and cell arrays that are distributed on parallel
shared or distributed memory computers. Before the evolution of the cloud as we
know it today, the user used a familiar frontend (e.g., MATLAB) as the client on a
laptop or desktop and connected seamlessly to a server (usually a large distributed
computer). Blockbuster functions from sparse and dense linear algebra, parallel FFTs,
parallel sorting, and many others, were easily available and composable for the user.
In these cases Star-P called Fortran/MPI or C/MPI. Star-P also allows a kind of
parallel for loop that works on rows, planes, or hyperplanes of an array. In these cases
Star-P uses copies of the client language on the backend, usually MATLAB, Octave,
Python, or R.

We learned that while we were able to obtain a useful parallel system in this way,
bolting parallelism onto an existing language that was not designed for performance
is difficult at best, and impossible at worst. One of our motivations to build Julia was
to design the right language for parallel computing.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 95

Julia provides many facilities for parallelism, which are described in detail in the
Julia manual.'® Distributed memory programming in Julia is built on two primitives—
remote calls that execute a function on a remote processor and remote references that
are returned by the remote processor to the caller. These primitives are implemented
completely within Julia. On top of them, Julia provides a distributed array data
structure, a pmap implementation, and a way to parallelize independent iterations of
a loop with the @parallel macro, all of which can parallelize code in distributed
memory. These ideas are exploratory in nature, and we only discuss them here to em-
phasize that well-designed programming language abstractions and primitives allow
one to express and implement parallelism completely within the language.

We proceed with one example that demonstrates parallel computing at work and
shows how one can impulsively grab a large number of processors and explore their
problem space quickly.

In[49]: addprocs(1024) # define on every processor
@everywhere function stochastic(f=2,n=200)
h=n"-(1/3)
x=0:h:10
N=length (x)
d=(-2/h"2 .-x) + 2sqrt(h*f)*randn(N) # diagonal
e=ones (N-1)/h"~2 # subdiagonal
eigvals(SymTridiagonal(d,e)) [N] # smallest negative eigenvalue
end

In[50]: wusing StatsBase
using PyPlot

println("Sequential version")

t = 10000

for B=[1,2,4,10,20]
z = fit(Histogram, [stochastic(f) for i=1:t], -4:0.01:1) .weights
plot (midpoints(-4:0.01:1), z/sum(z)/0.01)

end

1.8

10} ' i
m

w I |

0.6 ’

0.4

0.2} i

" y Lr']v'v
0.0 et s Y

16http://docs.julialang.org/en/latest /manual /parallel-computing/

http://docs.julialang.org/en/latest/manual/parallel-computing/

96 JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

Suppose we wish to perform a complicated histogram in parallel. We use an
example from random matrix theory, (but it could easily have been from finance), the
computation of the scaled largest eigenvalue in magnitude of the so-called stochastic
Airy operator: [§] % -+ ﬁdW. This is the usual finite difference discretization
of % — x with a “noisy” diagonal.

We illustrate an example of the famous Tracy-Widom law being simulated with
Monte Carlo experiments for different values of the inverse temperature parameter .
The simulation on one processor is fuzzy and unfocused, as compared to the same
simulation on 1024 processors, which is sharp and focused and runs in exactly the

same wall clock time as the sequential run.

In[51]: # Readily adding 1024 processors sharpens the Monte Carlo simulation,
computing 1024 times as many samples in the same time

In[52]: println("@parallel version")

Q@everywhere t = 10000

for B=[1,2,4,10,20]
z = @parallel (+) for p = l:nprocs()

fit(Histogram, [stochastic(f8) for i = 1:t], -4:0.01:1) .weights

end
plot (midpoints(-4:0.01:1), z/sum(z)/0.01)

end

16

14

12

1.0

0.8

0.6

0.4

0.2

0.0

5.5. Performance Recap. In the early days of high-level numerical computing
languages, the thinking was that the performance of the high-level language did not
matter so long as most of the time was spent inside the numerical libraries. These
libraries consisted of blockbuster algorithms that would be highly tuned, making
efficient use of computer memory, cache, and low-level instructions.

What the world learned was that only a few codes spent a majority of their
time in the blockbusters. Most codes were being hampered by interpreter overheads,
stemming from processing more aspects of a program at run time than are strictly
necessary.

As we explored in section 3, one of the hindrances to completing this analysis
is type information. Programming language design thus becomes an exercise in bal-
ancing incentives to the programmer to provide type information and the ability of
the computer to infer type information. Vectorization is one such incentive system.

JULIA: A FRESH APPROACH TO NUMERICAL COMPUTING 97

Existing numerical computing languages would have us believe that this is the only
system or, even if there are others, that somehow this is the best system.

Vectorization at the software level can be elegant for some problems. There are
many matrix computation problems that look beautiful vectorized. These programs
should be vectorized. Other programs require heroics and skill to vectorize, sometimes
producing unreadable code all in the name of performance. These programs we object
to vectorizing. Still other programs cannot be vectorized very well, even with heroics.
The Julia message is to vectorize when it is natural, producing nice code. Do not
vectorize in the name of speed.

Some users believe that vectorization is required to make use of special hardware
capabilities such as SIMD instructions, multithreading, GPU units, and other forms
of parallelism. This is not strictly true, as compilers are increasingly able to apply
these performance features to explicit loops. The Julia message remains the same:
vectorize when natural, when you feel it is right.

6. Conclusion. We built Julia to meet our needs for numerical computing, and
it turns out that many others wanted exactly the same thing. At the time of writ-
ing, not a day goes by when we don’t learn that someone new has picked up Julia
at universities and companies around the world, in fields as diverse as engineering,
mathematics, physical and social sciences, finance, biotech, and many others. More
than just a language, Julia has become a place for programmers, physical scientists,
social scientists, computational scientists, mathematicians, and others to pool their
collective knowledge in the form of online discussions and code.

Acknowledgments. Julia would not have been possible without the enthusiasm
and contributions of the Julia community'” and of MIT during early years of its de-
velopment. We thank Michael La Croix for his beautiful Julia display macros. We are
indebted at MIT to Jeremy Kepner, Chris Hill, Saman Amarasinghe, Charles Leiser-
son, Steven Johnson, and Gil Strang for their collegial support, which not only allowed
for the possibility of an academic research project to update technical computing, but
made it more fun, too.

REFERENCES

[1] E. ANDERSON, Z. BaIl, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. DU CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, PA, 1999. (Cited on p. 73)

[2] J. BEZANSON, Abstraction in Technical Computing, Ph.D. thesis, Massachusetts Institute of
Technology, MA, 2015. (Cited on p. 68)

[3] J. BEzANSON, J. CHEN, S. KARPINSKI, V. B. SHAH, AND A. EDELMAN, Array operators using
multiple dispatch, in ARRAY’14: Proceedings of ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming, ACM, New York, 2014,
pp. 56:56-56:61. (Cited on p. 86)

[4] J. BEZANSON, S. KARPINSKI, V. B. SHAH, AND A. EDELMAN, Julia: A Fast Dynamic Language
for Technical Computing, preprint, arXiv:1209.5145 [cs.PL], 2012. (Cited on pp. 68, 78)

[5] R. CHOY AND A. EDELMAN, Parallel MATLAB: Doing it right, Proc. IEEE, 93 (2005), pp. 331—
341. (Cited on p. 94)

[6] Clang: A C Language Family Frontend for LLVM, http://clang.llvm.org/. (Cited on p. 68)

[7] J. W. DEMMEL, J. J. DONGARRA, B. N. PArRLETT, W. KAHAN, M. Gu, D. S. BINDEL,
Y. Hipa, X. S. L1, O. A. MarQuEs, E. J. Riepy, C. VOMEL, J. LANGOU, P. LUSZCZEK,
J. KurzAk, A. BUTTARI, J. LANGOU, AND S. Tomov, Prospectus for the Next LA-
PACK and ScaLAPACK Libraries, Tech. report 181, LAPACK Working Note, 2007,
http://www.netlib.org/lapack /lawnspdf/lawn181.pdf. (Cited on p. 87)

IThttps://github.com/JuliaLang/julia/graphs/contributors

https://arxiv.org/abs/1209.5145
http://clang.llvm.org/
http://www.netlib.org/lapack/lawnspdf/lawn181.pdf

JEFF BEZANSON, ALAN EDELMAN, STEFAN KARPINSKI, AND VIRAL B. SHAH

A. EDELMAN AND B. SUTTON, From Random Matrices to Stochastic Operators, J. Statist.
Phys., 127 (2007), pp. 1121-1165. (Cited on p. 96)

The GNU MPFR Library, http://www.mpfr.org/. (Cited on p. 74)

C. GOMEZ, ED., Engineering and Scientific Computing with Scilab, Birkhduser, Boston, 1999.
(Cited on p. 66)

G. HOARE, Technicalities: Interactive Scientific Computing #1 of 2: Pythonic Parts, http:
//graydon2.dreamwidth.org/3186.html, 2014. (Cited on p. 74)

R. IHAKA AND R. GENTLEMAN, R: A language for data analysis and graphics, J. Comput.
Graph. Statist., 5 (1996), pp. 299-314. (Cited on p. 66)

INTERACTIVE SUPERCOMPUTING, Star-p user guide. http://www-math.mit.edu/~edelman/
publications/star-p-user.pdf. (Cited on p. 94)

INTERACTIVE SUPERCOMPUTING, Getting Started with Star-P: Taking Your First Test-Drive,
http://www-math.mit.edu/~edelman/publications.php, 2006. (Cited on p. 94)

The Jupyter Project, http://jupyter.org/. (Cited on p. 67)

W. KAHAN, How Futile Are Mindless Assessments of Roundoff in Floating-Point Computa-
tion?, http://www.cs.berkeley.edu/~wkahan/Mindless.pdf, 2006. (Cited on p. 72)

M. A. KApPLAN AND J. D. ULLMAN, A scheme for the automatic inference of variable types, J.
ACM, 27 (1980), pp. 128-145, https://doi.org/10.1145/322169.322181. (Cited on p. 78)

C. LATTNER AND V. ADVE, LLVM: A compilation framework for lifelong program analysis and
transformation, in Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO’04), Palo Alto, CA, 2004, ACM, New York, 2004, pp. 75-86.
(Cited on p. 68)

C. L. Lawson, R. J. HansonN, D. R. Kincaip, aND F. T. KROGH, Basic linear alge-
bra subprograms for Fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308-323,
https://doi.org/10.1145/355841.355847. (Cited on p. 73)

M. LuBiN AND I. DunNING, Computing in Operations Research wusing Julia,
INFORMS J. Comput., 27 (2015), pp. 238-248, https://doi.org/10.1287/ijoc.2014.0623;
arXiv preprint: http://dx.doi.org/10.1287/ijoc.2014.0623. (Cited on pp. 67, 74)

Mathematica, http://www.mathematica.com. (Cited on p. 66)

MATLAB, http://www.mathworks.com. (Cited on p. 66)

The MIT License, http://opensource.org/licenses/MIT. (Cited on p. 74)

M. MOHNEN, A graph-free approach to data-flow analysis, in Compiler Construction, R. Hor-
spool, ed., Lecture Notes in Comput. Sci. 2304, Springer, Berlin, Heidelberg, 2002, pp. 185—
213. (Cited on p. 78)

M. MurPHY, Octave: A free, high-level language for mathematics, Linux J., 1997 (1997),
326884, http://dl.acm.org/citation.cfm?id=326876.326884. (Cited on p. 66)

R. MuscHEVICI, A. POTANIN, E. TEMPERO, AND J. NOBLE, Multiple dispatch in practice, in
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications, OOPSLA 08, ACM, New York, 2008, pp. 563-582,
https://doi.org/10.1145/1449764.1449808. (Cited on p. 87)

A. NOACK, Fast and Generic Linear Algebra in Julia, Tech. report, MIT, Cambridge, MA,
2015. (Cited on pp. 88, 91)

J. REGIER, K. PAMNANY, R. GIORDANO, R. THOMAS, D. SCHLEGEL, J. MCAULIFFE, AND PRAB-
HAT, Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian
Inference, preprint, arXiv:1611.03404 [cs.DC], 2016. (Cited on p. 67)

Rust, http://www.rust-lang.org/. (Cited on p. 74)

H. SHEN, Interactive notebooks: Sharing the code, Nature Toolbox, 515 (2014), pp. 151-152,
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261. (Cited on
p. 67)

G. STRANG, Introduction to Linear Algebra, Wellesley-Cambridge Press, Wellesley, MA, 2003,
https://books.google.com /books?id=Gv4pCVyoUVYC. (Cited on p. 88)

Swift, https://developer.apple.com/swift/. (Cited on p. 68)

M. UpeLL, K. MOHAN, D. ZENG, J. HONG, S. DIAMOND, AND S. BoyD, Convex optimiza-
tion in Julia, in SC14 Workshop on High Performance Technical Computing in Dynamic
Languages, 2014; preprint, arXiv:1410.4821 [math.OC], 2014. (Cited on p. 67)

S. vAN DER WALT, S. C. COLBERT, AND G. VAROQUAUX, The NumPy Array: A Structure for
Efficient Numerical Computation, CoRR, abs/1102.1523, 2011. (Cited on p. 66)

H. WICKHAM, ggplot2, http://ggplot2.org/. (Cited on p. 71)

L. WILKINSON, The Grammar of Graphics (Statistics and Computing), Springer-Verlag, New
York, 2005. (Cited on p. 71)

http://www.mpfr.org/
http://graydon2.dreamwidth.org/3186.html
http://graydon2.dreamwidth.org/3186.html
http://www-math.mit.edu/~edelman/publications/star-p-user.pdf
http://www-math.mit.edu/~edelman/publications/star-p-user.pdf
http://www-math.mit.edu/~edelman/publications.php
http://jupyter.org/
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
https://doi.org/10.1145/322169.322181
https://doi.org/10.1145/355841.355847
https://doi.org/10.1287/ijoc.2014.0623
http://dx.doi.org/10.1287/ijoc.2014.0623
http://www.mathematica.com
http://www.mathworks.com
http://opensource.org/licenses/MIT
http://dl.acm.org/citation.cfm?id=326876.326884
https://doi.org/10.1145/1449764.1449808
https://arXiv.org/abs/1611.0304
http://www.rust-lang.org/
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
https://books.google.com/books?id=Gv4pCVyoUVYC
https://developer.apple.com/swift/
http://arxiv.org/abs/1410.4821
http://dblp.uni-trier.de/rec/html/journals/corr/abs-1102-1523
http://ggplot2.org/

	Scientific Computing Languages: The Julia Innovation
	Julia Architecture and Language Design Philosophy

	A Taste of Julia
	A Brief Tour
	An Invaluable Tool for Numerical Integrity
	The Julia Community

	Writing Programs With and Without Types
	The Balance between Human and the Computer
	Julia's Recognizable Types
	User's Own Types Are First Class Too
	Vectorization: Key Strengths and Serious Weaknesses
	Type Inference Rescues ``For Loops" and So Much More

	Code Selection: Run the Right Code at the Right Time
	Multiple Dispatch
	Code Selection from Bits to Matrices
	Summing Numbers: Floats and Ints
	Summing Matrices: Dense and Sparse

	The Many Levels of Code Selection
	Is ``Code Selection" Traditional Object Oriented Programming?
	Quantifying the Use of Multiple Dispatch
	Case Study for Numerical Computing
	Determinant: Simple Single Dispatch
	A Symmetric Arrow Matrix Type

	Leveraging Design for High Performance Libraries
	Integer Arithmetic
	A Powerful Approach to Linear Algebra
	Matrix Factorizations
	User-Extensible Wrappers for BLAS and LAPACK

	High Performance Polynomials and Special Functions with Macros
	Easy and Flexible Parallelism
	Performance Recap

	Conclusion
	References

